表示三角函數(shù)的符號

函數(shù)符號的故事?
1個回答2024-02-23 18:16
三角函數(shù)中有許多符號,其中sin,cos,tag,ctg,sec,csc是最重要的符號,但是在這些符號使用以前,人們都是用文字來進行敘述的,這樣使用起來非常麻煩。在實際應(yīng)用中,人們漸漸地用符號來代替它們。

正弦的符號開始記為sine,這一詞是由阿拉伯人創(chuàng)造的,但是最早把它應(yīng)用于三角函數(shù)上面的是雷基身蒙坦,他是15世紀西歐數(shù)學(xué)界的領(lǐng)導(dǎo)人物,在他1464年著的《論各種三角形》一書中,首先使用了“sine".這本書是專門講三角學(xué)脫離了天文學(xué),成為一門獨立的數(shù)學(xué)分支。

余弦和余切開媽記為cossine和cotangent,它們是由英國人根目爾在1620年出版的《炮兵測量學(xué)》一書中首先創(chuàng)造并使用的。

正割和正切開始記為secant和tangent,它們是由16世紀初期丹麥數(shù)學(xué)家箍馬斯·芬克首先創(chuàng)造并使用的,最早見于他的著作《圓幾何學(xué)》中。

余割開始記為cosecnat,它是由銳梯卡斯在16世紀創(chuàng)造的,最早見于他1596年著的《宮廷樂曲》一書中。

后來,人們在使用中,發(fā)現(xiàn)這些符號比較長,而且寫起來容易出錯,1626年,阿貝爾物把“sine","tangent","secant",簡寫為“sin"/"tan","sec".到了1675睥,英國人奧斯特又把"cosine","cotangent","cosecant"簡寫為“cos","cot","csc",但是這些符號并沒有通行開來,直到地748年,經(jīng)過數(shù)學(xué)家歐拉的提倡,才得以普及。解放手,我國的數(shù)學(xué)教材受到了蘇聯(lián)數(shù)學(xué)的影響,把“cot"改為“ctg","tan"改為"tg",其余四個符號沒有改動,現(xiàn)在這六個符號一直在三角函數(shù)中廣為應(yīng)用。
數(shù)學(xué)函數(shù)符號的故事
1個回答2024-02-13 01:02
誘導(dǎo)公式

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα



sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα



sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα





sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα



sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα





sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα



sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα





sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα



sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)
二次函數(shù)符號的故事
1個回答2024-02-21 20:23
歷史表明,重要數(shù)學(xué)概念對數(shù)學(xué)發(fā)展的作用是不可估量的,函數(shù)概念對數(shù)學(xué)發(fā)展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數(shù)概念的歷史發(fā)展,看一看函數(shù)概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助于我們提高對函數(shù)概念來龍去脈認識的清晰度,而且更能幫助我們領(lǐng)悟數(shù)學(xué)概念對數(shù)學(xué)發(fā)展,數(shù)學(xué)學(xué)習(xí)的巨大作用.
(一)
??馬克思曾經(jīng)認為,函數(shù)概念來源于代數(shù)學(xué)中不定方程的研究.由于羅馬時代的丟番圖對不定方程已有相當研究,所以函數(shù)概念至少在那時已經(jīng)萌芽.
??自哥白尼的天文學(xué)革命以后,運動就成了文藝復(fù)興時期科學(xué)家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉(zhuǎn)和公轉(zhuǎn),那么下降的物體為什么不發(fā)生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什么?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對于高度和射程的影響等問題,既是科學(xué)家的力圖解決的問題,也是軍事家要求解決的問題,函數(shù)概念就是從運動的研究中引申出的一個數(shù)學(xué)概念,這是函數(shù)概念的力學(xué)來源.
(二)
??早在函數(shù)概念尚未明確提出以前,數(shù)學(xué)家已經(jīng)接觸并研究了不少具體的函數(shù),比如對數(shù)函數(shù)、三角函數(shù)、雙曲函數(shù)等等.1673年前后笛卡兒在他的解析幾何中,已經(jīng)注意到了一個變量對于另一個變量的依賴關(guān)系,但由于當時尚未意識到需要提煉一般的函數(shù)概念,因此直到17世紀后期牛頓、萊布尼茲建立微積分的時候,數(shù)學(xué)家還沒有明確函數(shù)的一般意義.
??1673年,萊布尼茲首次使用函數(shù)一詞表示“冪”,后來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關(guān)幾何量.由此可以看出,函數(shù)一詞最初的數(shù)學(xué)含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞“流量”來表示變量間的關(guān)系,直到1689年,瑞士數(shù)學(xué)家約翰·貝努里才在萊布尼茲函數(shù)概念的基礎(chǔ)上,對函數(shù)概念進行了明確定義,貝努里把變量x和常量按任何方式構(gòu)成的量叫“x的函數(shù)”,表示為yx.
??當時,由于連接變數(shù)與常數(shù)的運算主要是算術(shù)運算、三角運算、指數(shù)運算和對數(shù)運算,所以后來歐拉就索性把用這些運算連接變數(shù)x和常數(shù)c而成的式子,取名為解析函數(shù),還將它分成了“代數(shù)函數(shù)”與“超越函數(shù)”.
??18世紀中葉,由于研究弦振動問題,達朗貝爾與歐拉先后引出了“任意的函數(shù)”的說法.在解釋“任意的函數(shù)”概念的時候,達朗貝爾說是指“任意的解析式”,而歐拉則認為是“任意畫出的一條曲線”.現(xiàn)在看來這都是函數(shù)的表達方式,是函數(shù)概念的外延.
(三)
??函數(shù)概念缺乏科學(xué)的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術(shù)中有廣泛應(yīng)用,但由于沒有函數(shù)的科學(xué)定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉(zhuǎn)向物理學(xué).他在和W·威伯爾合作發(fā)明電報的過程中,做了許多關(guān)于磁的實驗工作,提出了“力與距離的平方成反比例”這個重要的理論,使得函數(shù)作為數(shù)學(xué)的一個獨立分支而出現(xiàn)了,實際的需要促使人們對函數(shù)的定義進一步研究.
??后來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當后一量變化時前一量也隨著變化,那么第一個量稱為第二個量的函數(shù).“這個定義雖然還沒有道出函數(shù)的本質(zhì),但卻把變化、運動注入到函數(shù)定義中去,是可喜的進步.”
??在函數(shù)概念發(fā)展史上,法國數(shù)學(xué)家富里埃的工作影響最大,富里埃深刻地揭示了函數(shù)的本質(zhì),主張函數(shù)不必局限于解析表達式.1822年,他在名著《熱的解析理論》中說,“通常,函數(shù)表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規(guī)律;他們以任何方式一個挨一個.”在該書中,他用一個三角級數(shù)和的形式表達了一個由不連續(xù)的“線”所給出的函數(shù).更確切地說就是,任意一個以2π為周期函數(shù),在〔-π,π〕區(qū)間內(nèi),可以由
?表示出,其中
??富里埃的研究,從根本上動搖了舊的關(guān)于函數(shù)概念的傳統(tǒng)思想,在當時的數(shù)學(xué)界引起了很大的震動.原來,在解析式和曲線之間并不存在不可逾越的鴻溝,級數(shù)把解析式和曲線溝通了,那種視函數(shù)為解析式的觀點終于成為揭示函數(shù)關(guān)系的巨大障礙.
??通過一場爭論,產(chǎn)生了羅巴切夫斯基和狄里克萊的函數(shù)定義.
??1834年,俄國數(shù)學(xué)家羅巴切夫斯基提出函數(shù)的定義:“x的函數(shù)是這樣的一個數(shù),它對于每個x都有確定的值,并且隨著x一起變化.函數(shù)值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應(yīng)值的方法.函數(shù)的這種依賴關(guān)系可以存在,但仍然是未知的.”這個定義建立了變量與函數(shù)之間的對應(yīng)關(guān)系,是對函數(shù)概念的一個重大發(fā)展,因為“對應(yīng)”是函數(shù)概念的一種本質(zhì)屬性與核心部分.
??1837年,德國數(shù)學(xué)家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關(guān)系無關(guān)緊要,所以他的定義是:“如果對于x的每一值,y總有完全確定的值與之對應(yīng),則y是x的函數(shù).”
??根據(jù)這個定義,即使像如下表述的,它仍然被說成是函數(shù)(狄里克萊函數(shù)):

f(x)= 1???(x為有理數(shù)),
0???(x為無理數(shù)).

??在這個函數(shù)中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區(qū)間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數(shù).
??狄里克萊的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,以完全清晰的方式為所有數(shù)學(xué)家無條件地接受.至此,我們已可以說,函數(shù)概念、函數(shù)的本質(zhì)定義已經(jīng)形成,這就是人們常說的經(jīng)典函數(shù)定義.
(四)
??生產(chǎn)實踐和科學(xué)實驗的進一步發(fā)展,又引起函數(shù)概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現(xiàn)象.1930年量子力學(xué)問世了,在量子力學(xué)中需要用到一種新的函數(shù)——δ-函數(shù),

即?ρ(x)= 0,x≠0,
∞,x=0.

??δ-函數(shù)的出現(xiàn),引起了人們的激烈爭論.按照函數(shù)原來的定義,只允許數(shù)與數(shù)之間建立對應(yīng)關(guān)系,而沒有把“∞”作為數(shù).另外,對于自變量只有一個點不為零的函數(shù),其積分值卻不等于零,這也是不可想象的.然而,δ-函數(shù)確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產(chǎn)生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設(shè)車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是
??P(0)=壓力/接觸面=1/0=∞.
??其余點x≠0處,因無壓力,故無壓強,即?P(x)=0.另外,我們知道壓強函數(shù)的積分等于壓力,即
?函數(shù)概念就在這樣的歷史條件下能動地向前發(fā)展,產(chǎn)生了新的現(xiàn)代函數(shù)定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應(yīng),則稱在集合M上定義一個函數(shù),記為y=f(x).元素x稱為自變元,元素y稱為因變元.
??函數(shù)的現(xiàn)代定義與經(jīng)典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發(fā)展,是數(shù)學(xué)發(fā)展道路上的重大轉(zhuǎn)折,近代的泛函分析可以作為這種轉(zhuǎn)折的標志,它研究的是一般集合上的函數(shù)關(guān)系.
??函數(shù)概念的定義經(jīng)過二百多年來的錘煉、變革,形成了函數(shù)的現(xiàn)代定義,應(yīng)該說已經(jīng)相當完善了.不過數(shù)學(xué)的發(fā)展是無止境的,函數(shù)現(xiàn)代定義的形式并不意味著函數(shù)概念發(fā)展的歷史終結(jié),近二十年來,數(shù)學(xué)家們又把函數(shù)歸結(jié)為一種更廣泛的概念—“關(guān)系”.
??設(shè)集合X、Y,我們定義X與Y的積集X×Y為
??X×Y={(x,y)|x∈X,y∈Y}.
??積集X×Y中的一子集R稱為X與Y的一個關(guān)系,若(x,y)∈R,則稱x與y有關(guān)系R,記為xRy.若(x,y)R,則稱x與y無關(guān)系.
??現(xiàn)設(shè)f是X與Y的關(guān)系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么稱f為X到Y(jié)的函數(shù).在此定義中,已在形式上回避了“對應(yīng)”的術(shù)語,全部使用集合論的語言了.
??從以上函數(shù)概念發(fā)展的全過程中,我們體會到,聯(lián)系實際、聯(lián)系大量數(shù)學(xué)素材,研究、發(fā)掘、拓廣數(shù)學(xué)概念的內(nèi)涵是何等重要.
有關(guān)函數(shù)符號的故事
1個回答2024-05-11 04:53
樓主幫你找了一下:

歷史表明,重要數(shù)學(xué)概念對數(shù)學(xué)發(fā)展的作用是不可估量的,函數(shù)概念對數(shù)學(xué)發(fā)展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數(shù)概念的歷史發(fā)展,看一看函數(shù)概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助于我們提高對函數(shù)概念來龍去脈認識的清晰度,而且更能幫助我們領(lǐng)悟數(shù)學(xué)概念對數(shù)學(xué)發(fā)展,數(shù)學(xué)學(xué)習(xí)的巨大作用.

(一)

馬克思曾經(jīng)認為,函數(shù)概念來源于代數(shù)學(xué)中不定方程的研究.由于羅馬時代的丟番圖對不定方程已有相當研究,所以函數(shù)概念至少在那時已經(jīng)萌芽.

自哥白尼的天文學(xué)革命以后,運動就成了文藝復(fù)興時期科學(xué)家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉(zhuǎn)和公轉(zhuǎn),那么下降的物體為什么不發(fā)生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什么?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對于高度和射程的影響等問題,既是科學(xué)家的力圖解決的問題,也是軍事家要求解決的問題,函數(shù)概念就是從運動的研究中引申出的一個數(shù)學(xué)概念,這是函數(shù)概念的力學(xué)來源.

(二)

早在函數(shù)概念尚未明確提出以前,數(shù)學(xué)家已經(jīng)接觸并研究了不少具體的函數(shù),比如對數(shù)函數(shù)、三角函數(shù)、雙曲函數(shù)等等.1673年前后笛卡兒在他的解析幾何中,已經(jīng)注意到了一個變量對于另一個變量的依賴關(guān)系,但由于當時尚未意識到需要提煉一般的函數(shù)概念,因此直到17世紀后期牛頓、萊布尼茲建立微積分的時候,數(shù)學(xué)家還沒有明確函數(shù)的一般意義.

1673年,萊布尼茲首次使用函數(shù)一詞表示“冪”,后來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關(guān)幾何量.由此可以看出,函數(shù)一詞最初的數(shù)學(xué)含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞“流量”來表示變量間的關(guān)系,直到1689年,瑞士數(shù)學(xué)家約翰·貝努里才在萊布尼茲函數(shù)概念的基礎(chǔ)上,對函數(shù)概念進行了明確定義,貝努里把變量x和常量按任何方式構(gòu)成的量叫“x的函數(shù)”,表示為yx.

當時,由于連接變數(shù)與常數(shù)的運算主要是算術(shù)運算、三角運算、指數(shù)運算和對數(shù)運算,所以后來歐拉就索性把用這些運算連接變數(shù)x和常數(shù)c而成的式子,取名為解析函數(shù),還將它分成了“代數(shù)函數(shù)”與“超越函數(shù)”.

18世紀中葉,由于研究弦振動問題,達朗貝爾與歐拉先后引出了“任意的函數(shù)”的說法.在解釋“任意的函數(shù)”概念的時候,達朗貝爾說是指“任意的解析式”,而歐拉則認為是“任意畫出的一條曲線”.現(xiàn)在看來這都是函數(shù)的表達方式,是函數(shù)概念的外延.

(三)

函數(shù)概念缺乏科學(xué)的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術(shù)中有廣泛應(yīng)用,但由于沒有函數(shù)的科學(xué)定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉(zhuǎn)向物理學(xué).他在和W·威伯爾合作發(fā)明電報的過程中,做了許多關(guān)于磁的實驗工作,提出了“力與距離的平方成反比例”這個重要的理論,使得函數(shù)作為數(shù)學(xué)的一個獨立分支而出現(xiàn)了,實際的需要促使人們對函數(shù)的定義進一步研究.

后來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當后一量變化時前一量也隨著變化,那么第一個量稱為第二個量的函數(shù).“這個定義雖然還沒有道出函數(shù)的本質(zhì),但卻把變化、運動注入到函數(shù)定義中去,是可喜的進步.”

在函數(shù)概念發(fā)展史上,法國數(shù)學(xué)家富里埃的工作影響最大,富里埃深刻地揭示了函數(shù)的本質(zhì),主張函數(shù)不必局限于解析表達式.1822年,他在名著《熱的解析理論》中說,“通常,函數(shù)表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規(guī)律;他們以任何方式一個挨一個.”在該書中,他用一個三角級數(shù)和的形式表達了一個由不連續(xù)的“線”所給出的函數(shù).更確切地說就是,任意一個以2π為周期函數(shù),在〔-π,π〕區(qū)間內(nèi),可以由

表示出,其中

富里埃的研究,從根本上動搖了舊的關(guān)于函數(shù)概念的傳統(tǒng)思想,在當時的數(shù)學(xué)界引起了很大的震動.原來,在解析式和曲線之間并不存在不可逾越的鴻溝,級數(shù)把解析式和曲線溝通了,那種視函數(shù)為解析式的觀點終于成為揭示函數(shù)關(guān)系的巨大障礙.

通過一場爭論,產(chǎn)生了羅巴切夫斯基和狄里克萊的函數(shù)定義.

1834年,俄國數(shù)學(xué)家羅巴切夫斯基提出函數(shù)的定義:“x的函數(shù)是這樣的一個數(shù),它對于每個x都有確定的值,并且隨著x一起變化.函數(shù)值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應(yīng)值的方法.函數(shù)的這種依賴關(guān)系可以存在,但仍然是未知的.”這個定義建立了變量與函數(shù)之間的對應(yīng)關(guān)系,是對函數(shù)概念的一個重大發(fā)展,因為“對應(yīng)”是函數(shù)概念的一種本質(zhì)屬性與核心部分.

1837年,德國數(shù)學(xué)家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關(guān)系無關(guān)緊要,所以他的定義是:“如果對于x的每一值,y總有完全確定的值與之對應(yīng),則y是x的函數(shù).”

根據(jù)這個定義,即使像如下表述的,它仍然被說成是函數(shù)(狄里克萊函數(shù)):



f(x)= 1(x為有理數(shù)),

0(x為無理數(shù)).



在這個函數(shù)中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區(qū)間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數(shù).

狄里克萊的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,以完全清晰的方式為所有數(shù)學(xué)家無條件地接受.至此,我們已可以說,函數(shù)概念、函數(shù)的本質(zhì)定義已經(jīng)形成,這就是人們常說的經(jīng)典函數(shù)定義.

(四)

生產(chǎn)實踐和科學(xué)實驗的進一步發(fā)展,又引起函數(shù)概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現(xiàn)象.1930年量子力學(xué)問世了,在量子力學(xué)中需要用到一種新的函數(shù)——δ-函數(shù),



即ρ(x)= 0,x≠0,

∞,x=0.



δ-函數(shù)的出現(xiàn),引起了人們的激烈爭論.按照函數(shù)原來的定義,只允許數(shù)與數(shù)之間建立對應(yīng)關(guān)系,而沒有把“∞”作為數(shù).另外,對于自變量只有一個點不為零的函數(shù),其積分值卻不等于零,這也是不可想象的.然而,δ-函數(shù)確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產(chǎn)生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設(shè)車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是

P(0)=壓力/接觸面=1/0=∞.

其余點x≠0處,因無壓力,故無壓強,即P(x)=0.另外,我們知道壓強函數(shù)的積分等于壓力,即

函數(shù)概念就在這樣的歷史條件下能動地向前發(fā)展,產(chǎn)生了新的現(xiàn)代函數(shù)定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應(yīng),則稱在集合M上定義一個函數(shù),記為y=f(x).元素x稱為自變元,元素y稱為因變元.

函數(shù)的現(xiàn)代定義與經(jīng)典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發(fā)展,是數(shù)學(xué)發(fā)展道路上的重大轉(zhuǎn)折,近代的泛函分析可以作為這種轉(zhuǎn)折的標志,它研究的是一般集合上的函數(shù)關(guān)系.

函數(shù)概念的定義經(jīng)過二百多年來的錘煉、變革,形成了函數(shù)的現(xiàn)代定義,應(yīng)該說已經(jīng)相當完善了.不過數(shù)學(xué)的發(fā)展是無止境的,函數(shù)現(xiàn)代定義的形式并不意味著函數(shù)概念發(fā)展的歷史終結(jié),近二十年來,數(shù)學(xué)家們又把函數(shù)歸結(jié)為一種更廣泛的概念—“關(guān)系”.

設(shè)集合X、Y,我們定義X與Y的積集X×Y為

X×Y={(x,y)|x∈X,y∈Y}.

積集X×Y中的一子集R稱為X與Y的一個關(guān)系,若(x,y)∈R,則稱x與y有關(guān)系R,記為xRy.若(x,y)R,則稱x與y無關(guān)系.

現(xiàn)設(shè)f是X與Y的關(guān)系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么稱f為X到Y(jié)的函數(shù).在此定義中,已在形式上回避了“對應(yīng)”的術(shù)語,全部使用集合論的語言了.

從以上函數(shù)概念發(fā)展的全過程中,我們體會到,聯(lián)系實際、聯(lián)系大量數(shù)學(xué)素材,研究、發(fā)掘、拓廣數(shù)學(xué)概念的內(nèi)涵是何等重要.
函數(shù)符號的故事
1個回答2024-01-24 03:47
500多年前,行車數(shù)學(xué)家維德梅發(fā)明了“+”,很形象地指出這是在一橫上面再加一豎。后來,他想到把豎去掉就是減少,于是又發(fā)明了“-”。300年后,美國數(shù)學(xué)家歐德賴把“+”旋轉(zhuǎn)了半圈,于是發(fā)明了“×”。18世紀,瑞士人哈納在給孩子分西瓜時,一刀把西瓜切成兩半,于是他發(fā)明了“÷”,就是用一條線把兩點分開?!埃健笔?6世紀英國學(xué)者列科爾德發(fā)明的,他覺得兩根粗細長短一樣又完全平等的線表示“等于”再合適不過。公元1631年,一個名叫哈里奧特的人把“=”分別向兩邊張開,就發(fā)明了大于號>和小于號<。平方根號“√?”,1220年意大利數(shù)學(xué)家菲波那契使用R作為平方根號。十七世紀法國數(shù)學(xué)家笛卡爾在他的《幾何學(xué)》一書中第一次用“√?”表示根號?!啊?”是由拉丁文root(方根)的第一個字母“r”變來,上面的短線是括線,相當于括號。圓周率的來歷:很早以前,人們看出,圓的周長和直徑的比是個與圓的大小無關(guān)的常數(shù),并稱之為圓周率.1600年,英國威廉.奧托蘭特首先使用π表示圓周率,因為π是希臘之"圓周"的第一個字母,而δ是"直徑"的第一個字母,當δ=1時,圓周率為π.1706年英國的瓊斯首先使用π.1737年歐拉在其著作中使用π.后來被數(shù)學(xué)家廣泛接受,一直沒用至今.π是一個非常重要的常數(shù).一位德國數(shù)學(xué)家評論道:"歷史上一個國家所算得的圓周率的準確程度,可以做為衡量這個這家當時數(shù)學(xué)發(fā)展水平的重要標志."古今中外很多數(shù)學(xué)家都孜孜不倦地尋求過π值的計算方法.公元前200年間古希臘數(shù)學(xué)家阿基米德首先從理論上給出π值的正確求法.他用圓外切與內(nèi)接多邊形的周長從大、小兩個方向上同時逐步逼近圓的周長,巧妙地求得π會元前150年左右,另一位古希臘數(shù)學(xué)家托勒密用弦表法(以1 的圓心角所對弦長乘以360再除以圓的直徑)給出了π的近似值3.1416. 公元200年間,我國數(shù)學(xué)家劉徽提供了求圓周率的科學(xué)方法----割圓術(shù),體現(xiàn)了極限觀點.劉徽與阿基米德的方法有所不同,他只取"內(nèi)接"不取"外切".利用圓面積不等式推出結(jié)果,起到了事半功倍的效果.而后,祖沖之在圓周率的計算上取得了世界領(lǐng)先地位,求得"約率" 和"密率" (又稱祖率)得到3.1415****<π<3.1415****.可惜,祖沖之的計算方法后來失傳了.人們推測他用了劉徽的割圓術(shù),但究竟用什么方法,還是一個謎.15世紀,伊斯蘭的數(shù)學(xué)家阿爾.卡西通過分別計算圓內(nèi)接和外接正3 2 邊形周長,把 π 值推到小數(shù)點后16位,打破了祖沖之保持了上千年的記錄.1579年法國韋達發(fā)現(xiàn)了關(guān)系式 ...首次擺脫了幾何學(xué)的陳舊方法,尋求到了π的解析表達式.1650年瓦里斯把π表示成元窮乘積的形式稍后,萊布尼茨發(fā)現(xiàn)接著,歐拉證明了這些公式的計算量都很大,盡管形式非常簡單.π值的計算方法的最大突破是找到了它的反正切函數(shù)表達式.1671年,蘇格蘭數(shù)學(xué)家格列哥里發(fā)現(xiàn)了1706年,英國數(shù)學(xué)麥欣首先發(fā)現(xiàn) 其計算速度遠遠超過方典算法.1777年法國數(shù)學(xué)家蒲豐提出他的著名的投針問題.依*它,可以用概率方法得到 的過似值.假定在平面上畫一組距離為 的平行線,向此平面任意投一長度為 的針,若投針次數(shù)為 ,針馬平行線中任意一條相交的次數(shù)為 ,則有 ,很多人做過實驗,1901年,有人投針3408次得出π3.1415****,如果取 ,則該式化簡為1794年勒讓德證明了π是無理數(shù),即不可能用兩個整數(shù)的比表示.1882年,德國數(shù)學(xué)家林曼德證明了π是超越數(shù),即不可能是一個整系數(shù)代數(shù)方程的根.本世紀50年代以后,圓周率π的計算開始借助于電子計算機,從而出現(xiàn)了新的突破.目前有人宣稱已經(jīng)把π計算到了億位甚至十億位以上的有效數(shù)字.人們試圖從統(tǒng)計上獲悉π的各位數(shù)字是否有某種規(guī)律.競爭還在繼續(xù),正如有人所說,數(shù)學(xué)家探索中的進程也像π這個數(shù)一樣:永不循環(huán),無止無休......
函數(shù)符號的故事?
1個回答2024-02-14 03:08
歷史表明,重要數(shù)學(xué)概念對數(shù)學(xué)發(fā)展的作用是不可估量的,函數(shù)概念對數(shù)學(xué)發(fā)展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數(shù)概念的歷史發(fā)展,看一看函數(shù)概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助于我們提高對函數(shù)概念來龍去脈認識的清晰度,而且更能幫助我們領(lǐng)悟數(shù)學(xué)概念對數(shù)學(xué)發(fā)展,數(shù)學(xué)學(xué)習(xí)的巨大作用.

(一)

馬克思曾經(jīng)認為,函數(shù)概念來源于代數(shù)學(xué)中不定方程的研究.由于羅馬時代的丟番圖對不定方程已有相當研究,所以函數(shù)概念至少在那時已經(jīng)萌芽.

自哥白尼的天文學(xué)革命以后,運動就成了文藝復(fù)興時期科學(xué)家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉(zhuǎn)和公轉(zhuǎn),那么下降的物體為什么不發(fā)生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什么?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對于高度和射程的影響等問題,既是科學(xué)家的力圖解決的問題,也是軍事家要求解決的問題,函數(shù)概念就是從運動的研究中引申出的一個數(shù)學(xué)概念,這是函數(shù)概念的力學(xué)來源.

(二)

早在函數(shù)概念尚未明確提出以前,數(shù)學(xué)家已經(jīng)接觸并研究了不少具體的函數(shù),比如對數(shù)函數(shù)、三角函數(shù)、雙曲函數(shù)等等.1673年前后笛卡兒在他的解析幾何中,已經(jīng)注意到了一個變量對于另一個變量的依賴關(guān)系,但由于當時尚未意識到需要提煉一般的函數(shù)概念,因此直到17世紀后期牛頓、萊布尼茲建立微積分的時候,數(shù)學(xué)家還沒有明確函數(shù)的一般意義.

1673年,萊布尼茲首次使用函數(shù)一詞表示“冪”,后來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關(guān)幾何量.由此可以看出,函數(shù)一詞最初的數(shù)學(xué)含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞“流量”來表示變量間的關(guān)系,直到1689年,瑞士數(shù)學(xué)家約翰·貝努里才在萊布尼茲函數(shù)概念的基礎(chǔ)上,對函數(shù)概念進行了明確定義,貝努里把變量x和常量按任何方式構(gòu)成的量叫“x的函數(shù)”,表示為yx.

當時,由于連接變數(shù)與常數(shù)的運算主要是算術(shù)運算、三角運算、指數(shù)運算和對數(shù)運算,所以后來歐拉就索性把用這些運算連接變數(shù)x和常數(shù)c而成的式子,取名為解析函數(shù),還將它分成了“代數(shù)函數(shù)”與“超越函數(shù)”.

18世紀中葉,由于研究弦振動問題,達朗貝爾與歐拉先后引出了“任意的函數(shù)”的說法.在解釋“任意的函數(shù)”概念的時候,達朗貝爾說是指“任意的解析式”,而歐拉則認為是“任意畫出的一條曲線”.現(xiàn)在看來這都是函數(shù)的表達方式,是函數(shù)概念的外延.

(三)

函數(shù)概念缺乏科學(xué)的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術(shù)中有廣泛應(yīng)用,但由于沒有函數(shù)的科學(xué)定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉(zhuǎn)向物理學(xué).他在和W·威伯爾合作發(fā)明電報的過程中,做了許多關(guān)于磁的實驗工作,提出了“力與距離的平方成反比例”這個重要的理論,使得函數(shù)作為數(shù)學(xué)的一個獨立分支而出現(xiàn)了,實際的需要促使人們對函數(shù)的定義進一步研究.

后來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當后一量變化時前一量也隨著變化,那么第一個量稱為第二個量的函數(shù).“這個定義雖然還沒有道出函數(shù)的本質(zhì),但卻把變化、運動注入到函數(shù)定義中去,是可喜的進步.”

在函數(shù)概念發(fā)展史上,法國數(shù)學(xué)家富里埃的工作影響最大,富里埃深刻地揭示了函數(shù)的本質(zhì),主張函數(shù)不必局限于解析表達式.1822年,他在名著《熱的解析理論》中說,“通常,函數(shù)表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規(guī)律;他們以任何方式一個挨一個.”在該書中,他用一個三角級數(shù)和的形式表達了一個由不連續(xù)的“線”所給出的函數(shù).更確切地說就是,任意一個以2π為周期函數(shù),在〔-π,π〕區(qū)間內(nèi),可以由

表示出,其中

富里埃的研究,從根本上動搖了舊的關(guān)于函數(shù)概念的傳統(tǒng)思想,在當時的數(shù)學(xué)界引起了很大的震動.原來,在解析式和曲線之間并不存在不可逾越的鴻溝,級數(shù)把解析式和曲線溝通了,那種視函數(shù)為解析式的觀點終于成為揭示函數(shù)關(guān)系的巨大障礙.

通過一場爭論,產(chǎn)生了羅巴切夫斯基和狄里克萊的函數(shù)定義.

1834年,俄國數(shù)學(xué)家羅巴切夫斯基提出函數(shù)的定義:“x的函數(shù)是這樣的一個數(shù),它對于每個x都有確定的值,并且隨著x一起變化.函數(shù)值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應(yīng)值的方法.函數(shù)的這種依賴關(guān)系可以存在,但仍然是未知的.”這個定義建立了變量與函數(shù)之間的對應(yīng)關(guān)系,是對函數(shù)概念的一個重大發(fā)展,因為“對應(yīng)”是函數(shù)概念的一種本質(zhì)屬性與核心部分.

1837年,德國數(shù)學(xué)家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關(guān)系無關(guān)緊要,所以他的定義是:“如果對于x的每一值,y總有完全確定的值與之對應(yīng),則y是x的函數(shù).”

根據(jù)這個定義,即使像如下表述的,它仍然被說成是函數(shù)(狄里克萊函數(shù)):



f(x)= 1(x為有理數(shù)),

0(x為無理數(shù)).



在這個函數(shù)中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區(qū)間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數(shù).

狄里克萊的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,以完全清晰的方式為所有數(shù)學(xué)家無條件地接受.至此,我們已可以說,函數(shù)概念、函數(shù)的本質(zhì)定義已經(jīng)形成,這就是人們常說的經(jīng)典函數(shù)定義.

(四)

生產(chǎn)實踐和科學(xué)實驗的進一步發(fā)展,又引起函數(shù)概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現(xiàn)象.1930年量子力學(xué)問世了,在量子力學(xué)中需要用到一種新的函數(shù)——δ-函數(shù),



即ρ(x)= 0,x≠0,

∞,x=0.



δ-函數(shù)的出現(xiàn),引起了人們的激烈爭論.按照函數(shù)原來的定義,只允許數(shù)與數(shù)之間建立對應(yīng)關(guān)系,而沒有把“∞”作為數(shù).另外,對于自變量只有一個點不為零的函數(shù),其積分值卻不等于零,這也是不可想象的.然而,δ-函數(shù)確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產(chǎn)生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設(shè)車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是

P(0)=壓力/接觸面=1/0=∞.

其余點x≠0處,因無壓力,故無壓強,即P(x)=0.另外,我們知道壓強函數(shù)的積分等于壓力,即

函數(shù)概念就在這樣的歷史條件下能動地向前發(fā)展,產(chǎn)生了新的現(xiàn)代函數(shù)定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應(yīng),則稱在集合M上定義一個函數(shù),記為y=f(x).元素x稱為自變元,元素y稱為因變元.

函數(shù)的現(xiàn)代定義與經(jīng)典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發(fā)展,是數(shù)學(xué)發(fā)展道路上的重大轉(zhuǎn)折,近代的泛函分析可以作為這種轉(zhuǎn)折的標志,它研究的是一般集合上的函數(shù)關(guān)系.

函數(shù)概念的定義經(jīng)過二百多年來的錘煉、變革,形成了函數(shù)的現(xiàn)代定義,應(yīng)該說已經(jīng)相當完善了.不過數(shù)學(xué)的發(fā)展是無止境的,函數(shù)現(xiàn)代定義的形式并不意味著函數(shù)概念發(fā)展的歷史終結(jié),近二十年來,數(shù)學(xué)家們又把函數(shù)歸結(jié)為一種更廣泛的概念—“關(guān)系”.

設(shè)集合X、Y,我們定義X與Y的積集X×Y為

X×Y={(x,y)|x∈X,y∈Y}.

積集X×Y中的一子集R稱為X與Y的一個關(guān)系,若(x,y)∈R,則稱x與y有關(guān)系R,記為xRy.若(x,y)R,則稱x與y無關(guān)系.

現(xiàn)設(shè)f是X與Y的關(guān)系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么稱f為X到Y(jié)的函數(shù).在此定義中,已在形式上回避了“對應(yīng)”的術(shù)語,全部使用集合論的語言了.

從以上函數(shù)概念發(fā)展的全過程中,我們體會到,聯(lián)系實際、聯(lián)系大量數(shù)學(xué)素材,研究、發(fā)掘、拓廣數(shù)學(xué)概念的內(nèi)涵是何等重要
數(shù)學(xué)函數(shù)符號的故事
1個回答2024-02-24 03:02
笛卡兒



笛卡兒(Descartes,René)(1596-1660),法國數(shù)學(xué)家、科學(xué)家和哲學(xué)家。他是西方近代資產(chǎn)階級哲學(xué)奠基人之一。他的哲學(xué)與數(shù)學(xué)思想對歷史的影響是深遠的。人們在他的墓碑上刻下了這樣一句話:“笛卡兒,歐洲文藝復(fù)興以來,第一個為人類爭取并保證理性權(quán)利的人?!?

笛卡兒出生于法國,父親是法國一個地方法院的評議員,相當于現(xiàn)在的律師和法官。一歲時母親去世,給笛卡兒留下了一筆遺產(chǎn),為日后他從事自己喜愛的工作提供了可靠的經(jīng)濟保障。8歲時他進入一所耶穌會學(xué)校,在校學(xué)習(xí)8年,接受了傳統(tǒng)的文化教育,讀了古典文學(xué)、歷史、神學(xué)、哲學(xué)、法學(xué)、醫(yī)學(xué)、數(shù)學(xué)及其他自然科學(xué)。但他對所學(xué)的東西頗感失望。因為在他看來教科書中那些微妙的論證,其實不過是模棱兩可甚至前后矛盾的理論,只能使他頓生懷疑而無從得到確鑿的知識,惟一給他安慰的是數(shù)學(xué)。在結(jié)束學(xué)業(yè)時他暗下決心:不再死鉆書本學(xué)問,而要向“世界這本大書”討教,于是他決定避開戰(zhàn)爭,遠離社交活動頻繁的都市,尋找一處適于研究的環(huán)境。1628年,他從巴黎移居荷蘭,開始了長達20年的潛心研究和寫作生涯,先后發(fā)表了許多在數(shù)學(xué)和哲學(xué)上有重大影響的論著。在荷蘭長達20年的時間里,他集中精力做了大量的研究工作,在1634年寫了《論世界》,書中總結(jié)了他在哲學(xué)、數(shù)學(xué)和許多自然科學(xué)問題上的看法。1641年出版了《行而上學(xué)的沉思》,1644年又出版了《哲學(xué)原理》等。他的著作在生前就遭到教會指責(zé),死后又被梵蒂岡教皇列為禁書,但這并沒有阻止他的思想的傳播。

笛卡兒不僅在哲學(xué)領(lǐng)域里開辟了一條新的道路,同時笛卡兒又是一勇于探索的科學(xué)家,在物理學(xué)、生理學(xué)等領(lǐng)域都有值得稱道的創(chuàng)見,特別是在數(shù)學(xué)上他創(chuàng)立了解析幾何,從而打開了近代數(shù)學(xué)的大門,在科學(xué)史上具有劃時代的意義。

笛卡兒的主要數(shù)學(xué)成果集中在他的“幾何學(xué)”中。當時,代數(shù)還是一門比較新的科學(xué),幾何學(xué)的思維還在數(shù)學(xué)家的頭腦中占有統(tǒng)治地位。在笛卡兒之前,幾何與代數(shù)是數(shù)學(xué)中兩個不同的研究領(lǐng)域。笛卡兒站在方法論的自然哲學(xué)的高度,認為希臘人的幾何學(xué)過于依賴于圖形,束縛了人的想象力。對于當時流行的代數(shù)學(xué),他覺得它完全從屬于法則和公式,不能成為一門改進智力的科學(xué)。因此他提出必須把幾何與代數(shù)的優(yōu)點結(jié)合起來,建立一種“真正的數(shù)學(xué)”。笛卡兒的思想核心是:把幾何學(xué)的問題歸結(jié)成代數(shù)形式的問題,用代數(shù)學(xué)的方法進行計算、證明,從而達到最終解決幾何問題的目的。依照這種思想他創(chuàng)立了我們現(xiàn)在稱之為的“解析幾何學(xué)”。1637年,笛卡兒發(fā)表了《幾何學(xué)》,創(chuàng)立了直角坐標系。他用平面上的一點到兩條固定直線的距離來確定點的距離,用坐標來描述空間上的點。他進而又創(chuàng)立了解析幾何學(xué),表明了幾何問題不僅可以歸結(jié)成為代數(shù)形式,而且可以通過代數(shù)變換來實現(xiàn)發(fā)現(xiàn)幾何性質(zhì),證明幾何性質(zhì)。解析幾何的出現(xiàn),改變了自古希臘以來代數(shù)和幾何分離的趨向,把相互對立著的“數(shù)”與“形”統(tǒng)一了起來,使幾何曲線與代數(shù)方程相結(jié)合。笛卡兒的這一天才創(chuàng)見,更為微積分的創(chuàng)立奠定了基礎(chǔ),從而開拓了變量數(shù)學(xué)的廣闊領(lǐng)域。最為可貴的是,笛卡兒用運動的觀點,把曲線看成點的運動的軌跡,不僅建立了點與實數(shù)的對應(yīng)關(guān)系,而且把形(包括點、線、面)和“數(shù)”兩個對立的對象統(tǒng)一起來,建立了曲線和方程的對應(yīng)關(guān)系。這種對應(yīng)關(guān)系的建立,不僅標志著函數(shù)概念的萌芽,而且標明變數(shù)進入了數(shù)學(xué),使數(shù)學(xué)在思想方法上發(fā)生了偉大的轉(zhuǎn)折--由常量數(shù)學(xué)進入變量數(shù)學(xué)的時期。正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點是笛卡兒的變數(shù)。有了變數(shù),運動進入了數(shù)學(xué),有了變數(shù),辨證法進入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要了。笛卡兒的這些成就,為后來牛頓、萊布尼茲發(fā)現(xiàn)微積分,為一大批數(shù)學(xué)家的新發(fā)現(xiàn)開辟了道路。

笛卡兒在其他科學(xué)領(lǐng)域的成就同樣累累碩果。笛卡兒靠著天才的直覺和嚴密的數(shù)學(xué)推理,在物理學(xué)方面做出了有益的貢獻。從1619年讀了開普勒的光學(xué)著作后,笛卡兒就一直關(guān)注著透鏡理論;并從理論和實踐兩方面參與了對光的本質(zhì)、反射與折射率以及磨制透鏡的研究。他把光的理論視為整個知識體系中最重要的部分。笛卡兒堅信光是“即時”傳播的,他在著作《論人》和《哲學(xué)原理》中,完整的闡發(fā)了關(guān)于光的本性的概念。他還從理論上推導(dǎo)了折射定律,與荷蘭的斯涅耳共同分享發(fā)現(xiàn)光的折射定律的榮譽。他還對人眼進行光學(xué)分析,解釋了視力失常的原因是晶狀體變形,設(shè)計了矯正視力的透鏡。在力學(xué)方面,他提出了宇宙間運動量總和是常數(shù)的觀點,創(chuàng)造了運動量守恒定律,為能量守恒定律奠定了基礎(chǔ)。他還指出,一個物體若不受外力作用,將沿直線勻速運動。

笛卡兒在其他的科學(xué)領(lǐng)域還有不少值得稱道的創(chuàng)見。他發(fā)展了宇宙演化論,創(chuàng)立了漩渦說。他認為太陽的周圍有巨大的漩渦,帶動著行星不斷運轉(zhuǎn)。物質(zhì)的質(zhì)點處于統(tǒng)一的漩渦之中,在運動中分化出土、空氣和火三種元素,土形成行星,火則形成太陽和恒星。笛卡兒的這一太陽起源的旋渦說,比康德的星云說早一個世紀,是17世紀中最有權(quán)威的宇宙論。他還提出了刺激反應(yīng)說,為生理學(xué)做出了一定的貢獻。

笛卡兒近代科學(xué)的始祖。笛卡兒是歐洲近代哲學(xué)的奠基人之一,黑格爾稱他為“現(xiàn)代哲學(xué)之父”。他自成體系,熔唯物主義與唯心主義于一爐,在哲學(xué)史上產(chǎn)生了深遠的影響。同時,他又是一位勇于探索的科學(xué)家,他所建立的解析幾何在數(shù)學(xué)史上具有劃時代的意義。笛卡兒堪稱17世紀的歐洲哲學(xué)界和科學(xué)界最有影響的巨匠之一,被譽為“近代科學(xué)的始祖”。

歐拉的第一個偉大成就是把解析方法引入力學(xué)中。他用極小化原理來表述自然規(guī)律,再與積分的極小化原理相結(jié)合,得到了現(xiàn)在以他的名字命名的一類微分方程的解法。這些極值原理形成了一門學(xué)科:變分法。

歐拉

在分析方面,歐拉出版了三部不朽的著作。其中的齊次函數(shù)理論及收斂性理論非常著名。而關(guān)于前N個自然數(shù)的倒數(shù)和的趨勢及由此產(chǎn)生的歐拉常數(shù)現(xiàn)在仍然被廣泛使用。

在流體力學(xué)方面,他第一個充分表述了壓力在液體流動中的作用。他建立了流體力學(xué)的方程以及許多概念;即使現(xiàn)在稱為Beroulli定理的流體力學(xué)定律也是他首先嚴格地推導(dǎo)出來的。

幾何是歐拉的最愛。從各個孤立問題的解決到發(fā)展出完整幾何分支的新方法,他都作出了卓越貢獻。一個最著名的公式是揭示多面體的面數(shù),頂點數(shù)與邊數(shù)的關(guān)系:面數(shù) + 頂點數(shù) - 邊數(shù) = 2。而歐拉對哥尼斯堡七橋問題的解決,導(dǎo)致了圖論的誕生。

歐拉的大部分時間化在數(shù)論研究上。在丟番圖分析方能,他是繼丟番圖和費爾馬之后的最偉大的數(shù)學(xué)家,盡管他的方法不系統(tǒng)。在代數(shù)方面,他用行列式表示線性方程組的消元過程;也是他化四次方程為3次方程。

他雙目失明后,仍然以口授方式進行大量的數(shù)學(xué)寫作。他花了許多時間去改進星球運動的理論。他第一個假設(shè)Kepler橢圓的中心是太陽系的質(zhì)量中心,而不是太陽。在攝動理論中,他創(chuàng)立了許多經(jīng)典的原理。

歐拉的研究領(lǐng)域還包括光學(xué)、聲學(xué)、熱學(xué)等。
函數(shù)符號的故事
1個回答2024-02-20 13:56
17世紀末,德國數(shù)學(xué)家來布尼茨在1692年首先采用"函數(shù)"這個名詞,但它僅指"冪""坐標""切比線"等概念.到1718年,函數(shù)被看成是以自主變量的值求出因變量的值的解析式子.1748年,瑞士數(shù)學(xué)家歐拉稱函數(shù)是在幾何上"能用曲線表示的"代數(shù)式,"是一條隨意可以描畫的曲線".以后,人們逐漸深入到用"變化""運動"的觀點來認識函數(shù).
(詳細請看浙江初中數(shù)學(xué)第五冊(1999年5月)閱讀材料)
誰知道函數(shù)符號的故事啊
1個回答2024-02-22 05:51
?函數(shù)概念缺乏科學(xué)的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術(shù)中有廣泛應(yīng)用,但由于沒有函數(shù)的科學(xué)定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉(zhuǎn)向物理學(xué).他在和W·威伯爾合作發(fā)明電報的過程中,做了許多關(guān)于磁的實驗工作,提出了“力與距離的平方成反比例”這個重要的理論,使得函數(shù)作為數(shù)學(xué)的一個獨立分支而出現(xiàn)了,實際的需要促使人們對函數(shù)的定義進一步研究.
??后來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當后一量變化時前一量也隨著變化,那么第一個量稱為第二個量的函數(shù).“這個定義雖然還沒有道出函數(shù)的本質(zhì),但卻把變化、運動注入到函數(shù)定義中去,是可喜的進步.”
??在函數(shù)概念發(fā)展史上,法國數(shù)學(xué)家富里埃的工作影響最大,富里埃深刻地揭示了函數(shù)的本質(zhì),主張函數(shù)不必局限于解析表達式.1822年,他在名著《熱的解析理論》中說,“通常,函數(shù)表示相接的一啟羨組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規(guī)律;他們以任何方式一個挨一個.”在該書中,他用一個三角級數(shù)和的形式表達了一禪差個由不連續(xù)的“線”所給出的函數(shù).更確切地說就是,任意一個以2π為周期函數(shù),在〔-π,π〕區(qū)間內(nèi),可以由
?表示出,其中
??富里埃的研究,從根本上動搖了舊的關(guān)于函數(shù)概念的傳統(tǒng)思想,在當時的數(shù)學(xué)界引起了很大的震動.原來,在解析式和曲線之間并不存在不可逾越的鴻溝,級數(shù)把解析式和曲線溝通了,那種視函數(shù)為解析式的觀點終于成為揭示函數(shù)關(guān)系的巨大障礙.
??通過一場爭論,產(chǎn)生了羅巴切夫斯基和狄里克萊的函數(shù)定義.
??1834年,俄國數(shù)學(xué)家羅巴切夫斯基提出函數(shù)的定義:“x的函數(shù)是這樣的一個數(shù),它對于每個x都有確定的值,并且隨著x一起變化.函數(shù)值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應(yīng)值的方法.函數(shù)的這種依賴關(guān)系可以存在,但仍然是未知的.”這個定義建立了變量與函數(shù)之間的對應(yīng)關(guān)系,是對函數(shù)概念的一個重大發(fā)展,因為“對應(yīng)”是函數(shù)概念的一種本質(zhì)屬性與核心部分.
??1837年,德國數(shù)學(xué)家狄里克萊(Dirichlet)認為怎樣去建立x與悄襲拍y之間的關(guān)系無關(guān)緊要,所以他的定義是:“如果對于x的每一值,y總有完全確定的值與之對應(yīng),則y是x的函數(shù).”
??根據(jù)這個定義,即使像如下表述的,它仍然被說成是函數(shù)(狄里克萊函數(shù)):

f(x)= 1???(x為有理數(shù)),
0???(x為無理數(shù)).

??在這個函數(shù)中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區(qū)間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數(shù).
??狄里克萊的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,以完全清晰的方式為所有數(shù)學(xué)家無條件地接受.至此,我們已可以說,函數(shù)概念、函數(shù)的本質(zhì)定義已經(jīng)形成,這就是人們常說的經(jīng)典函數(shù)定義.
函數(shù)符號的故事
1個回答2024-03-13 03:39
歷史表明,重要數(shù)學(xué)概念對數(shù)學(xué)發(fā)展的作用是不可估量的,函數(shù)概念對數(shù)學(xué)發(fā)展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數(shù)概念的歷史發(fā)展,看一看函數(shù)概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助于我們提高對函數(shù)概念來龍去脈認識的清晰度,而且更能幫助我們領(lǐng)悟數(shù)學(xué)概念對數(shù)學(xué)發(fā)展,數(shù)學(xué)學(xué)習(xí)的巨大作用.
(一)
??馬克思曾經(jīng)認為,函數(shù)概念來源于代數(shù)學(xué)中不定方程的研究.由于羅馬時代的丟番圖對不定方程已有相當研究,所以函數(shù)概念至少在那時已經(jīng)萌芽.
??自哥白尼的天文學(xué)革命以后,運動就成了文藝復(fù)興時期科學(xué)家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉(zhuǎn)和公轉(zhuǎn),那么下降的物體為什么不發(fā)生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什么?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對于高度和射程的影響等問題,既是科學(xué)家的力圖解決的問題,也是軍事家要求解決的問題,函數(shù)概念就是從運動的研究中引申出的一個數(shù)學(xué)概念,這是函數(shù)概念的力學(xué)來源.
(二)
??早在函數(shù)概念尚未明確提出以前,數(shù)學(xué)家已經(jīng)接觸并研究了不少具體的函數(shù),比如對數(shù)函數(shù)、三角函數(shù)、雙曲函數(shù)等等.1673年前后笛卡兒在他的解析幾何中,已經(jīng)注意到了一個變量對于另一個變量的依賴關(guān)系,但由于當時尚未意識到需要提煉一般的函數(shù)概念,因此直到17世紀后期牛頓、萊布尼茲建立微積分的時候,數(shù)學(xué)家還沒有明確函數(shù)的一般意義.
??1673年,萊布尼茲首次使用函數(shù)一詞表示“冪”,后來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關(guān)幾何量.由此可以看出,函數(shù)一詞最初的數(shù)學(xué)含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞“流量”來表示變量間的關(guān)系,直到1689年,瑞士數(shù)學(xué)家約翰·貝努里才在萊布尼茲函數(shù)概念的基礎(chǔ)上,對函數(shù)概念進行了明確定義,貝努里把變量x和常量按任何方式構(gòu)成的量叫“x的函數(shù)”,表示為yx.
??當時,由于連接變數(shù)與常數(shù)的運算主要是算術(shù)運算、三角運算、指數(shù)運算和對數(shù)運算,所以后來歐拉就索性把用這些運算連接變數(shù)x和常數(shù)c而成的式子,取名為解析函數(shù),還將它分成了“代數(shù)函數(shù)”與“超越函數(shù)”.
??18世紀中葉,由于研究弦振動問題,達朗貝爾與歐拉先后引出了“任意的函數(shù)”的說法.在解釋“任意的函數(shù)”概念的時候,達朗貝爾說是指“任意的解析式”,而歐拉則認為是“任意畫出的一條曲線”.現(xiàn)在看來這都是函數(shù)的表達方式,是函數(shù)概念的外延.
(三)
??函數(shù)概念缺乏科學(xué)的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術(shù)中有廣泛應(yīng)用,但由于沒有函數(shù)的科學(xué)定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉(zhuǎn)向物理學(xué).他在和W·威伯爾合作發(fā)明電報的過程中,做了許多關(guān)于磁的實驗工作,提出了“力與距離的平方成反比例”這個重要的理論,使得函數(shù)作為數(shù)學(xué)的一個獨立分支而出現(xiàn)了,實際的需要促使人們對函數(shù)的定義進一步研究.
??后來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當后一量變化時前一量也隨著變化,那么第一個量稱為第二個量的函數(shù).“這個定義雖然還沒有道出函數(shù)的本質(zhì),但卻把變化、運動注入到函數(shù)定義中去,是可喜的進步.”
??在函數(shù)概念發(fā)展史上,法國數(shù)學(xué)家富里埃的工作影響最大,富里埃深刻地揭示了函數(shù)的本質(zhì),主張函數(shù)不必局限于解析表達式.1822年,他在名著《熱的解析理論》中說,“通常,函數(shù)表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規(guī)律;他們以任何方式一個挨一個.”在該書中,他用一個三角級數(shù)和的形式表達了一個由不連續(xù)的“線”所給出的函數(shù).更確切地說就是,任意一個以2π為周期函數(shù),在〔-π,π〕區(qū)間內(nèi),可以由
?表示出,其中
??富里埃的研究,從根本上動搖了舊的關(guān)于函數(shù)概念的傳統(tǒng)思想,在當時的數(shù)學(xué)界引起了很大的震動.原來,在解析式和曲線之間并不存在不可逾越的鴻溝,級數(shù)把解析式和曲線溝通了,那種視函數(shù)為解析式的觀點終于成為揭示函數(shù)關(guān)系的巨大障礙.
??通過一場爭論,產(chǎn)生了羅巴切夫斯基和狄里克萊的函數(shù)定義.
??1834年,俄國數(shù)學(xué)家羅巴切夫斯基提出函數(shù)的定義:“x的函數(shù)是這樣的一個數(shù),它對于每個x都有確定的值,并且隨著x一起變化.函數(shù)值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應(yīng)值的方法.函數(shù)的這種依賴關(guān)系可以存在,但仍然是未知的.”這個定義建立了變量與函數(shù)之間的對應(yīng)關(guān)系,是對函數(shù)概念的一個重大發(fā)展,因為“對應(yīng)”是函數(shù)概念的一種本質(zhì)屬性與核心部分.
??1837年,德國數(shù)學(xué)家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關(guān)系無關(guān)緊要,所以他的定義是:“如果對于x的每一值,y總有完全確定的值與之對應(yīng),則y是x的函數(shù).”
??根據(jù)這個定義,即使像如下表述的,它仍然被說成是函數(shù)(狄里克萊函數(shù)):

f(x)= 1???(x為有理數(shù)),
0???(x為無理數(shù)).

??在這個函數(shù)中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區(qū)間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數(shù).
??狄里克萊的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,以完全清晰的方式為所有數(shù)學(xué)家無條件地接受.至此,我們已可以說,函數(shù)概念、函數(shù)的本質(zhì)定義已經(jīng)形成,這就是人們常說的經(jīng)典函數(shù)定義.
(四)
??生產(chǎn)實踐和科學(xué)實驗的進一步發(fā)展,又引起函數(shù)概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現(xiàn)象.1930年量子力學(xué)問世了,在量子力學(xué)中需要用到一種新的函數(shù)——δ-函數(shù),

即?ρ(x)= 0,x≠0,
∞,x=0.

??δ-函數(shù)的出現(xiàn),引起了人們的激烈爭論.按照函數(shù)原來的定義,只允許數(shù)與數(shù)之間建立對應(yīng)關(guān)系,而沒有把“∞”作為數(shù).另外,對于自變量只有一個點不為零的函數(shù),其積分值卻不等于零,這也是不可想象的.然而,δ-函數(shù)確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產(chǎn)生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設(shè)車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是
??P(0)=壓力/接觸面=1/0=∞.
??其余點x≠0處,因無壓力,故無壓強,即?P(x)=0.另外,我們知道壓強函數(shù)的積分等于壓力,即
?函數(shù)概念就在這樣的歷史條件下能動地向前發(fā)展,產(chǎn)生了新的現(xiàn)代函數(shù)定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應(yīng),則稱在集合M上定義一個函數(shù),記為y=f(x).元素x稱為自變元,元素y稱為因變元.
??函數(shù)的現(xiàn)代定義與經(jīng)典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發(fā)展,是數(shù)學(xué)發(fā)展道路上的重大轉(zhuǎn)折,近代的泛函分析可以作為這種轉(zhuǎn)折的標志,它研究的是一般集合上的函數(shù)關(guān)系.
??函數(shù)概念的定義經(jīng)過二百多年來的錘煉、變革,形成了函數(shù)的現(xiàn)代定義,應(yīng)該說已經(jīng)相當完善了.不過數(shù)學(xué)的發(fā)展是無止境的,函數(shù)現(xiàn)代定義的形式并不意味著函數(shù)概念發(fā)展的歷史終結(jié),近二十年來,數(shù)學(xué)家們又把函數(shù)歸結(jié)為一種更廣泛的概念—“關(guān)系”.
??設(shè)集合X、Y,我們定義X與Y的積集X×Y為
??X×Y={(x,y)|x∈X,y∈Y}.
??積集X×Y中的一子集R稱為X與Y的一個關(guān)系,若(x,y)∈R,則稱x與y有關(guān)系R,記為xRy.若(x,y)R,則稱x與y無關(guān)系.
??現(xiàn)設(shè)f是X與Y的關(guān)系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么稱f為X到Y(jié)的函數(shù).在此定義中,已在形式上回避了“對應(yīng)”的術(shù)語,全部使用集合論的語言了.
??從以上函數(shù)概念發(fā)展的全過程中,我們體會到,聯(lián)系實際、聯(lián)系大量數(shù)學(xué)素材,研究、發(fā)掘、拓廣數(shù)學(xué)概念的內(nèi)涵是何等重要.
熱門問答